
Optimization Theory and Algorithm II September 9, 2022

Lecture 2: Review II
Lecturer:Xiangyu Chang Scribe: Xiangyu Chang

Edited by: Xiangyu Chang

1 Review

1.1 Modeling in Optimization

Example 1 Generalized Linear Model (GLM). Let us consider the following three management problems.

• b = House Price = F (a1 = number of rooms, a2 = school distriction, a3, . . .)

• b = Credit Rate = F (a1 = education, a2 = salary, a3, . . .)

• b = Number of Visit this month = F (a1 = number of visit last month, a2 = RFM, a3, . . .)

In this example, we introduced three classic regression models, linear regression(house price), Poisson regres-
sion (number of visit this month) and logistic regression (credit rate) derived from GLM. We parameterized the
parameters in the statistic models as a linear function of covariant variables a, and formed the optimization
problem from the likelihood.

Consider the input-output pairs {ai, bi}mi=1 as the data. The procedure can be summarized as following recipe,

1. write down a probabilistic model for bi

2. link model parameter x with ai

3. formed the optimization problem using maximum likelihood that aim to discover x with all data
{ai, bi}mi=1

Next we instantiate this recipe by three examples.

(i) Linear Regression: Given training data {ai, bi}mi=1 with ai ∈ Rp and bi ∈ R. Suppose each bi
i.i.d.∼

N(µi, σ
2), that is

P (bi|µi, σ
2) =

1√
2πσ

exp{− (bi − µi)
2

2σ2
}

=
1√
2πσ

exp{− b2i
2σ2

} exp{−
1
2µ

2
i − biµi

σ2
}.

It is convention to choose the parameters that multiply bi as the linear function of the variables ai with
the parametric coefficient x. Here we make the assumption that

θi = µi = ⟨ai,x⟩.

We wish to examine how we find a good x to make this work. Our strategy for this is to maximize the
likelihood of all observations {bi} as a function of x, i.e.

max
x

∏
i

exp{− 1

σ2
(
1

2
µ2
i − biµi)} ⇒ max

x
log

∏
i

exp{− 1

2σ2
(⟨ai, x⟩2 − bi⟨ai,x⟩)}.

1

To maximize this expression, we take the negative log of the expression, i.e. we want to minimize

min
x

1

σ2

n∑
i=1

(
1

2
⟨ai,x⟩2 − bi⟨ai,x⟩).

To write it more compactly, we denote,

A =

a
⊤
1
...

a⊤m

 , b =

 b1
...
bm

 .

And we have,
m∑
i=1

⟨ai, x⟩2 = ∥Ax∥2,
m∑
i=1

bi⟨ai,x⟩ = ⟨b, Ax⟩,

we get the minimization problem

argmin
x

1

2
∥Ax∥2 − ⟨b, Ax⟩ = argmin

x

1

2
∥Ax− b∥2

which is a linear least-squares regression problem.

(ii) Poisson Regression: The fitting problem is to minimize the negative log of the above expression with
respect to x,

min
x

m∑
i=1

{exp(⟨ai,x⟩)− bi⟨ai,x⟩}.

which is a simple Poisson regression.

(iii) Logistic Regression: Let bi ∈ {0, 1} and pi be the probability of success, i.e.

p(bi|pi) = pbii (1− pi)
1−bi

= exp{bi ln pi + (1− bi) ln(1− pi)}
= exp{bi(ln pi − ln(1− pi)) + ln(1− pi)}
= exp{bi ln pi

1−pi
+ ln(1− pi)}.

The choice θi = ln pi

1−pi
is called the canonical parameter, i.e. pi = exp(θi)

1+exp(θi)
= (1 + exp(−θi))

−1.
Letting θi = ⟨ai, x⟩ and noting that ln(1− pi) = − ln(1 + exp(θi)) the probability becomes

p(bi|θi) = exp{biθi − ln(1 + exp(θi))}.

The fitting problem is found by minimizing the negative log of the above expression,

min
x

m∑
i=1

[ln(1 + exp(θi))− biθi] = min
x

m∑
i=1

ln(1 + exp(⟨ai,x⟩))− ⟨b, Ax⟩.

(iv) GLM: We find that given a family of distributions for bi, given µi, σ
2 we have

f(bi|µi, σ
2) = g1(bi, σ

2) exp{biµi − g2(µi)

g3(σ2)
}

for some functions g1, g2, g3. And g2 is given by

1. g2(µi) =
1
2µ

2
i for linear regression,

2. g2(µi) = exp(µi) for Poisson regression,

2

3. g2(µi) = ln(1 + exp(µi)) for logistic regression.

This gives us the problem

min
x

n∑
i=1

g2(⟨ai,x⟩)− ⟨b, Ax⟩.

The difficulty of this problem depends on properties of g2. In these three cases g2 is convex and smooth,
but this won’t always be the case. This motivates us to look at properties of continuous functions.
We will discuss basic function properties that will determine how good will an optimization algorithm
perform on them.

Example 2 (Management Decision Tree Analysis)

A management decision tree is a branched flowchart showing multiple pathways for potential decisions and
outcomes.

Figure 1: An example of Management Decision Tree

• Suppose that a company is considering to develop a new product P. The product P includes two different
types. The company employ a marketing research institute to study that which type is better?

• Based on the study results, the marketing research institute report: (1) If they produce the first type
P1, then P1 has 0.3 chance for good sales with profit 170$ per unit; 0.5 chance for average sales with
profit 90$ per unit; 0.2 chance for poor sales with -6$ per unit.

• Based on the study results, the marketing research institute report: (1) If they produce the first type
P2, then P2 has 0.6 chance for good sales with profit 100$ per unit; 0.3 chance for average sales with
profit 50$ per unit; 0.1 chance for poor sales with 30$ per unit.

• Q: which one is better? P1 or P2?

• For determining P1 or P2, management decision tree analysis is a commonly used method (see Figure
1).

3

• The main idea is to calculate the so-called expected reward as follows:

I1 = 170× 0.3 + 90× 0.5− 6× 0.2 = 94.8,

and
I2 = 100× 0.6 + 50× 0.3 + 20× 0.1 = 77.

• So, I1 > I2, we need to choice P1.

Example 2 is a signal step decision making problem. What about multiple step decision making problem?

Example 3 (Markov Decision Processing and Reinforcement Learning)

𝐴𝑔𝑒𝑛𝑡

𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡

𝑎𝑡

𝑟𝑡+1

𝑠𝑡+1

𝑟𝑡

𝑠𝑡

𝑡 = 𝑡 + 1

Figure 2: Markov Decision Processing

The above multiple decision making problem (See Figure 2) can be formalized as a Markov Decision Processing
(MDP).

• State Space is considered as a finite state space with cardinality ||.

• Action Space is considered as a finite action space with cardinality ||.

• Transition Probability:
P(st+1|at, st, at−1, st−1, . . . , s0) = P(st+1|at, st). (1)

• Expected Reward:
E(rt|at, st, at−1, st−1, . . . , s0) = E(rt+1|at, st) = r(at, st). (2)

• Accumulated Reward:

R(τ) =

∞∑
t=0

γtr(at, st) (3)

where τ = (s0, a0, s1, a1, . . . ,) is a trajectory (see Figure 3) and 0 < γ < 1 is a discount factor.

• Policy π : s ∈→ ∆() and a ∼ π(a|s).

• Aim: Finding an optimal policy for maximizing the expected accumulated reward.

Optimization Formulation:
max
π

Eτ∼π[R(τ)]. (4)

Reinforcement Learning is commonly used method to solve the above optimization.

4

Figure 3: Trajectory of the Markov Decision Processing

1.2 Algorithms in Optimization

Let us consider an optimization problem

min
x

f(x), (5)

s.t. x ∈ X , (6)

where f : X ⊂ Rn → R, and further assume that x∗ is the optimal global point or solution for it. ??.

An optimization algorithm is to design for pursuing the x∗. However, usually it is not easy.

We consider the least squares problem,

min
x

f(x) =
1

2
∥Ax− b∥22. (7)

Q: How to find x∗ for the least squares problem?

Generally, I believe that you should known that to compute the derivative to obtain f ′(x) and set f ′(x) = 0.
Then the solution of f ′(x) = 0 maybe the optimal solution of Eq.(7). What does it mean f ′(x) for a function
defined on Rn?

Definition 1 A function f : Rn → R is Fŕechet-differential at x, if there exists a vector g ∈ Rn such that

lim
∆x→0

f(x+∆x)− f(x)− g⊤∆x

∥∆x∥
= 0. (8)

Then g is called the gradient of f at x, denoted as g := ∇f(x). If we further choose that ∆x = ϵei, and
ei = (0, . . . , 1︸︷︷︸

ith position

, 0, . . . , 0)⊤, then

∇f(x) =

(
∂f

∂x1
,
∂f

∂x2
, . . . ,

∂f

∂xn

)⊤

∈ Rn.

5

Definition 2 We define the Hessian matrix of function f : Rn → R at point x is

∇2f(x) =

(
∂2f

∂xi∂xj

)
∈ Rn2

=

∂2f
∂2x1

∂2f
∂x1∂x2

. . . ∂2f
∂x1∂xn...

... . . .
...

∂2f
∂xn∂x1

∂2f
∂xn∂x2

. . . ∂2f
∂2xn

 .

Commonly, we assume that the Hessian matrix ∇2f(x) is a symmetric matrix (actually need some regularity
conditions).

Definition 3 Let f : Rn → Rm, namely for any x ∈ Rn, f(x) = (f1(x), f2(x), . . . , fm(x))⊤ ∈ Rm, the
Jacobi matrix is denoted as

J(x) =

∂f1
∂x1

∂f1
∂x2

. . . ∂f1
∂xn...

... . . .
...

∂fm
∂x1

∂fm
∂x2

. . . ∂fm
∂xn

 ∈ Rm×n.

Example 4 f(x) = a⊤x, then ∇f(x) = a,∇2f(x) = 0 ∈ Rn2 , why???

Example 5 f(x) = 1
2∥Ax− b∥22.

Let us consider a general case, suppose that G : Rm → R and G(z) = g(z1) + g(z2) + · · · + g(zm) and
zi = a⊤i x, A ∈m×n, where z = (z1, . . . , zm)⊤. Let us derive that

∂G(Ax)

∂x
=

∂(g(a⊤1 x) + g(a⊤2 x) + · · ·+ g(a⊤mx))

∂x
(9)

=

m∑
i=1

∂g(a⊤i x)

∂x
=

m∑
i=1

∂g(a⊤i x)

∂a⊤i x
× ∂a⊤i x

∂x
(10)

=

m∑
i=1

∂g(a⊤i x)

∂a⊤i x
ai (11)

= A⊤∇G(z). (12)

Theorem 1 (First-order Optimality Condition) Consider a non-constrained optimization problem minx f(x),
where f : Rn → R and f ∈ C1. If x∗ is a local minimum, then

∇f(x∗) = 0.

The points which satisfy the equation ∇f(x) = 0 are called stationary points.

Theorem 2 (Second-order Optimality Condition) Consider a non-constrained optimization problem minx f(x),
where f : Rn → R and f ∈ C2. If x∗ is a local minimum, then

∇f(x∗) = 0 and ∇2f(x∗) ≥ 0,

where ∇2f(x∗) ≥ 0 means the Hessian matrix is a positive semi-definite matrix.

Theorem 3 (Sufficient Condition) Consider a non-constrained optimization problem minx f(x), where
f : Rn → R and f ∈ C2. If

∇f(x∗) = 0 and ∇2f(x∗) > 0,

where ∇2f(x∗) > 0 means the Hessian matrix is a positive definite matrix. Then x∗ is a local minimum of
f .

6

These proofs can be found at Page 161-163 of the text book.

We go back to this example and further assume that G(z) = 1
2∥z− b∥2 = 1

2

∑n
i=1(zi − bi)

2, zi = a⊤i x. Thus,
∇G(z) = (z1 − b1, . . . , zn − bn)

⊤. Finally, based on Eq.(12),

∇f(x) =
∂G(z)

∂x
= A⊤(z− b)

= A⊤(Ab− b) = A⊤Ax−Ab

and
∇2f(x) = A⊤A.

Recall the least squares problem (7), and set ∇f(x) = ∇ 1
2∥Ax − b∥22 = 0, then we obtain the so-called

normal equation:
A⊤Ax−A⊤b = 0. (13)

If A⊤A is invertible, then x∗ = (A⊤A)−1A⊤b, which is called a closed form solution.

According to the definition of stationary point, we know that x∗ = (A⊤A)−1A⊤b is a stationary point of
the least squares problem. Furthermore, if ∇2f(x) = A⊤A is a positive definite matrix (invertible), then
x∗ = (A⊤A)−1A⊤b is a local minimum according to Theorem 3.

The procedure of obtaining the closed form solution can be seen as an algorithm for solving
the linear least squares problem.

Optimization needs Iterative Algorithms. Why???? Let us recall the normal equation (13), and the solu-
tion x∗ = (A⊤A)−1A⊤b. Generally, the computational complexity of (A⊤A)−1 ∈ Rn2 is O(n3). why??????

The iterative algorithm usually has the following general form in Algorithm 1.

Algorithm 1 General Form of Iterative Algorithm

1: Input: Something you need
2: Initialization: a starting point x0, and step index t = 0
3: while a stop condition false do
4:

xt+1 := Iterative Algorithm(xt),

and
t := t+ 1.

5: end while
6: Output: The sequence {xt}Tt=0.

Then we hope that lim
t→∞

xt = x∗.

Example 6 (Solving the Normal Equation)

Denote that Ã = A⊤A and b̃ = A⊤b, then normal equation becomes that Ãx = b̃. How to compute it
efficiently?

• Jacobi Iterative Algorithm: Let Ã = B + D, where D = diag(Ã) and B = Ã − D. Then the normal
equation is (D +B)x = b̃. Thus, Dx = −Bx+ b̃. Finally,

x = −D−1Bx+D−1b̃. (14)

Based on Eq.(14), Jacobi iterative algorithm is designed via

xt+1 = −D−1Bxt +D−1b̃, (15)

7

and the scalar form is

xt+1,i =
b̃i −

∑n
j=1,j ̸=i xt,j

ãii
,

where we suppose that ãii ̸= 0 for all i = 1, . . . , n.
Insights: If lim

t→∞
xt = x∗, then lim

t→∞
xt+1 = −D−1B lim

t→∞
xt +D−1b̃. Thus, x∗ = −D−1Bx∗ +D−1b̃.

This indicates x∗ satisfies the normal equation (13).

• Gauss-Seidel Algorithm: Let Ã = L+U +D, where D = diag(Ã), L is the Lower triangular matrix of
Ã and U is the upper triangular matrix of Ã. Then the normal equation is (D + L+ U)x = b̃. Thus,
Dx = −Lx− Ux+ b̃. Finally,

x = −D−1Lx−D−1Ux+D−1b̃. (16)

Based on Eq.(16), Gauss-seidel iterative algorithm is designed via

xt+1 = −D−1Lxt+1 −D−1Uxt +D−1b̃, (17)

and the scalar form is

xt+1,i =
b̃i −

∑i−1
j=1 ãijxt+1,j −

∑n
j=i+1 ãijxt,j

ãii
,

where we suppose that ãii ̸= 0 for all i = 1, . . . , n.
Insights: If lim

t→∞
xt = x∗, then lim

t→∞
xt+1 = −D−1L lim

t→∞
xt+1 −D−1U lim

t→∞
xt +D−1b̃. Thus, x∗ =

−D−1Lx∗ −D−1Ux∗ +D−1b̃. This indicates x∗ satisfies the normal equation (13).

The procedure of obtaining the iterative solution can be seen as an algorithm for solving the
linear least squares problem.

Remark 1 Algorithms in optimization can be commonly summarized as three types, but it’s not limited to
these.

• Closed Form Solution, see (13).

• Iterative Algorithm, see Algorithm 1.

• Heuristic Algorithms, which will not be covered by the course.

1.3 Related Theory in Optimization

“Nothing is more practical than a good theory.”– by V. Vapnik [Vapnik, 1998].

What kind of theory we have to learn in Optimization?

• Theory can support you to construct models. You have see them in many examples (e.g., MLE).

• Theory can help you develop algorithms. For example, convex analysis, KTT conditions, duality theory,
optimally conditions, and among others.

• Theory can implicitly show the convergence property of the optimization algorithms. Convergence
theory is to show that under what conditions the sequences {xt}∞t=1 and {f(xt)}∞t=1 satisfy

lim
t→∞

xt = x∗ and lim
t→∞

f(xt) = f∗ = f(x∗).

Convergence Rate:

8

• linear convergence:
∥xt+1 − x∗∥
∥xt − x∗∥

≤ a,

where a ∈ (0, 1).

• Super-linear convergence:

lim
t→∞

∥xt+1 − x∗∥
∥xt − x∗∥

= 0.

• sub-linear convergence:

lim
t→∞

∥xt+1 − x∗∥
∥xt − x∗∥

= 1.

• Others theoretical bounds:
∥xt − x∗∥ ≤ O(t,Q),

and
∥f(xt)− f∗∥ ≤ O(t,Q),

where Q includes some constants related to the original optimization problem.

We justify the convergence theory of Jacobi and Gauss-Seidel algorithms for demonstrating an concrete
example.

Theorem 4 Suppose that we have the linear equation with form x = Bx + C, then we can develop an
iterative algorithm

xt+1 = Bxt + C. (18)

For any initial point x0, the generated sequence {xt}∞t=0 converges at x∗ if and only if ρ(B) := λmax(B) < 1,
where λmax(B) is the biggest eigenvalue of B and ρ(B) is so-called spectral radius of B. (In fact, ρ(B) :=√

λmax(B⊤B)), and when B is a normal matrix, ρ(B) is also equal to λmax(B))

1.4 Gradient Descent

Let us consider a unconstrained optimization problem

min
x

f(x) (19)

where x ∈ dom(f) ⊆ Rn, f is a continuous and F -differential function, i.e. f ∈ C1.

Basic Idea: The algorithm we need is

xt+1 = xt + sd, such that f(xt+1) ≤ f(xt),

where d ∈ Rn is a descent direction and s ∈ R is referred as to the step size of the descent algorithm. Note
that s is also called learning rate in the machine learning or deep learning community.

Given the descent algorithm, we need to determinate that

• How to choose the descent direction?

• How to choose the step size?

9

Insights: According to the Taylor expansion, we have that
f(xt+1) = f(xt) + ⟨∇f(xt),xt+1 − xt⟩+ o(∥xt+1 − xt∥), (20)

where lim
xt+1→xt

o(∥xt+1−xt∥)
∥xt+1−xt∥ = 0. You can review the little “o” notation by yourself. Furthermore,

f(xt+1) = f(xt) + s⟨∇f(xt),d⟩+ o(s∥d∥). (21)

Q: Could you please guess a descent direction?

Let d = −∇f(xt), then

f(xt+1) = f(xt)− s∥∇f(xt)∥2 + o(s∥∇f(xt)∥) ≈ f(xt)− s∥∇f(xt)∥2 ≤ f(xt), (22)
when s is “small enough”.

The iterative algorithm choosing the descent direction d = −∇f(xt) is referred to as Gradient
Descent Method. The remaining question is to find the proper step size s.

The first method is the Exact Line Search:
st = argmin

s∈R
f(xt − s · ∇f(xt)). (23)

The second method is the Backtracking Line Search.

Up to now, we have learned the gradient descent algorithm with linear search. The advantage of the algorithm
is the simple interpretation. However, the linear search step involved GD makes more computational effort
to find a proper step size. This also leads to difficulties in theoretical analysis (See Page 222).

Q: Whether exists a method to provide a proper step size s which can guarantee the convergence of the
gradient descent algorithm without line search.

The answer is Yes! for the specific objective function.

Definition 4 f : Rn → R is a β-smooth function if

• ∇f exists which is continuous.

• For any x1,x2 ∈ dom(f),
∥∇f(x1)−∇f(x2)∥2 ≤ β∥x1 − x2∥2. (24)

This means ∇f is a β-Lipshitz continuous function.

Let us show some examples:

• f(x) = ⟨b, Ax⟩ is a 0-smooth function.

• f(x) = 1
2∥b−Ax∥2 is a λmax(A

⊤A)-smooth function.

Theorem 5 Suppose that {xt}∞t=0 is generated by GD and the given tolerance ϵ > 0, if T ≥ 2β(f(x0)−f∗)
ϵ2 ,

then
min

t=0,1,...,T−1
∥∇f(xt)∥ ≤ ϵ. (25)

Theorem 6 Let f be a convex and β-smooth function, and {xt}∞t=0 is generated by GD. Then for any ϵ > 0,
take T ≥ β

ϵ ∥x
0 − x∗∥2,

f(xT)− f∗ ≤ ϵ. (26)

Theorem 7 Assume that f is a β-smooth and α-strongly convex function, and f∗ = inf f(x) exists, {xt}∞t=0

generated by GD, then for any ϵ > 0, choose T ≥ 2β
α log ∥x0−x∗∥

ϵ , it has ∥xT − x∗∥ ≤ ϵ.

10

1.5 Summary

Optimality Conditions:

• Necessary: ∇f(x∗) = 0.

• Necessary: ∇f(x∗) = 0 and ∇2f(x∗) ⪰ 0

• Sufficient: ∇f(x∗) = 0 and ∇2f(x∗) > 0

Table 1: Convergence Theory

β-smooth + Convex +α-strong Convex
min

1≤t≤T
∥∇f(xt)∥ O(1/

√
T) O(1/T) NA

f(xT)− f(x∗) NA O(1/T) β
2 exp(−α

βT)∥x
0 − x∗∥2

∥xT − x∗∥2 NA NA exp(−α
βT)∥x

0 − x∗∥2

References

[Vapnik, 1998] Vapnik, V. (1998). Statistical learning theory. John Wiley, New York.

11

	Review
	Modeling in Optimization
	Algorithms in Optimization
	Related Theory in Optimization
	Gradient Descent
	Summary

